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An articulatory study was conducted to investigate whether fluctuations in exertive mechanisms (attention, effort,

motivation, arousal, etc.) have a global effect on articulatory control systems. Participants in the experiment pro-

duced an articulatory pattern 400 times, attempting to do so as consistently as possible. Evidence for global exer-

tive modulation was obtained in the form of widespread correlations between variables associated with

biomechanically independent systems such as phonation, linguo-labial coordination, and head movement/posture.

Analyses of movement timing autocorrelation showed evidence for random walk-like dynamics on short timescales

and equilibrium dynamics on long timescales, along with evidence for low- and high-exertion states of production.

An extension of the coupled oscillators model of articulatory coordination is presented to account for these

phenomena.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Speech involves a variety of systems which interact on a
range of spatial and temporal scales. Most of the relevant sys-
tems—i.e. ensembles of neurons, individual speakers, social
networks—are typically far from equilibrium. In other words,
non-equilibrium states are the norm. Nonetheless, the
interactions between non-equilibrium systems may produce
emergent patterns which exhibit equilibrium-like behaviors.
Whenever we observe hints of such patterns, it is important
to study the relevant systems in detail, because they greatly
constrain our models and provide insight into underlying con-
trol mechanisms.

This study focuses on one such pattern, the symmetric tem-
poral displacement observed in the initiation of consonantal
and vocalic articulatory movements. Unconditioned, sponta-
neous fluctuations in this timing pattern were collected in an
experimental paradigm in which participants produced a single
target response 400 times, attempting to do so as consistently
as possible.

Two hypotheses were tested: an exertive modulation
hypothesis, which holds that exertive mechanisms (e.g. atten-
tion, effort, arousal) induce random walk-like dynamics in a
variety of independent speech motor control systems, and an
equilibration hypothesis, which holds that equilibration mecha-
nisms constrain articulatory control systems on long time-
scales, in effect confining the exertive random walk in a
potential. The exertive modulation hypothesis was supported
by positive lag-1 autocorrelations of response variables on
short timescales, along with pervasive correlations between
outputs of biomechanically independent motor systems. The
equilibration hypothesis was supported for some participants
by decreases in autocorrelation on longer timescales. It was
also observed that variation in a model-derived proxy for exer-
tive force was associated with differing profiles of variance and
covariance in articulatory timing, suggestive of a contrast
between high- and low-exertion regimes. These findings are
important because they provide a new basis for understanding
the mechanisms involved in speech production.

1.1. Equilibrium vs. random walk behavior of systems

The concept of equilibrium arises in many domains. For
example a mechanical equilibrium refers to a situation in which
the net force on an object is zero, a chemical equilibrium
describes an equivalence of forward and reverse chemical
reaction rates, and a population equilibrium describes a biolog-
ical system with stable predator and prey populations. In all of
these cases, if the equilibrium is stable, there is a cost (in
energy or in some other quantity) for deviations from the
equilibrium, with greater deviations being more costly. When
.1016/j.

http://dx.doi.org/10.1016/j.wocn.2017.03.001
mailto:tilsen@cornell.edu
http://dx.doi.org/10.1016/j.wocn.2017.03.001
http://www.sciencedirect.com/science/journal/00954470
http://www.elsevier.com/locate/Phonetics
http://dx.doi.org/10.1016/j.wocn.2017.03.001
http://dx.doi.org/10.1016/j.wocn.2017.03.001


2 S. Tilsen / Journal of Phonetics xxx (2017) xxx–xxx
fluctuations from the environment perturb a system from its
equilibrium state, the system subsequently returns to the
equilibrium.

In contrast, a system with random walk behavior does not
have an equilibrium or steady state. Generically, in a random
walk the state of the system changes at each time step with
a random displacement from the previous state. In the
absence of any external forces, there is no cost for changing
states, and hence if we wait long enough, we can expect the
system to be arbitrarily far from its starting point. Clearly the
systems which are responsible for controlling speech produc-
tion cannot be governed solely by random walk dynamics,
but it does not follow that there are no random walk-like com-
ponents to their behavior. One possible scenario is that speech
control systems have equilibrium states, but fluctuations in the
nervous system add a random walk-like component to system
dynamics. Evidence for this scenario can only be found if the
responses of systems to departures from equilibria are rela-
tively slow. Hence to investigate these possibilities, we must
examine speech patterns over an extended period of time.

A useful statistical approach to investigating these ideas is
to estimate the autocorrelation functions of system outputs. A
Gaussian white noise process exhibits zero autocorrelation
at all lags, because any state of the system is independent
from all previous states. This is a generic property of a system
which quickly returns to its equilibrium when perturbed—as
long as the return to equilibrium is faster than the measure-
ment period, successive observations will be uncorrelated. In
contrast, a random walk tends toward a lag-1 autocorrelation
of one, because each state depends on the previous one.
No equilibrium is present in a random walk. (See Box,
Jenkins, Reinsel, & Ljung, 2015; Chatfield, 2016; Sethna,
2006 for introductions to time series analysis and random
processes.)

Many systems of interest may have more complicated
structure, such as a random walk in an external field or a ran-
dom walk with an external noise source. To assess whether
observations might be generated by such a system, it is useful
to conduct analyses over a range of timescales by applying a
coarse-graining procedure to the observation sequence. The
Fig. 1. Comparison of autocorrelation scaling functions of several random processes. (Left) ex
of autocorrelation functions from 1000 simulations of 5000-sample observation sequences.
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coarse-graining used here involves averaging observations
over non-overlapping windows of time, thus integrating out
short-timescale fluctuations. The lag-1 autocorrelation scaling
function shows how the lag-1 autocorrelation changes as a
function of the size of the averaging window. Fig. 1 (right)
shows mean and ±1 standard deviation for autocorrelation
scaling functions of several different types of processes. Over
all coarse-grain timescales (s) the Gaussian noise process
tends toward a lag-1 autocorrelation of zero, while the random
walk tends toward a lag-1 autocorrelation of one (see Appen-
dix A.1 for details).

Unlike Gaussian noise and a random walk, more compli-
cated systems exhibit lag-1 autocorrelations that vary substan-
tially with analysis timescale. For example, a random walk with
an external Gaussian noise (e.g. measurement noise) con-
verges to random walk-like autocorrelation when coarse-
grained, but is less than one on short timescales. Alternatively,
a random walk in a quadratic potential has a random walk-like
autocorrelation on short timescales but eventually converges
to Gaussian noise-like equilibrium dynamics on longer scales.
Combining a random walk, external Gaussian noise, and a
quadratic potential results in an autocorrelation scaling func-
tion which increases at short timescales, peaks at some inter-
mediate scale, and decreases on longer timescales. We will
see this same profile in the autocorrelation scaling functions
of articulatory timing measures, which suggests that models
of articulatory control require mechanisms for both random
walk- and equilibrium-like dynamics.
1.2. Symmetric displacement in articulatory timing and the coupled
oscillators model

In many languages a pattern of articulatory timing called the
C–center effect is observed (Browman & Goldstein, 1988;
Hermes, Mücke, & Grice, 2013; Marin & Pouplier, 2010;
Tilsen et al., 2012), which involves the symmetric displacement
of the initiations of consonantal movements from the initiation
of a vocalic movement in syllables with complex onsets. As
schematized in Fig. 2 (left), the initiations of C1 and C2 constric-
tion gestures in a C1C2V syllable are equally displaced in
ample time series. (Right) Lag-1 autocorrelation scaling functions. Filled areas are ±1 s.d.
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Fig. 3. Overview of the coupled oscillators model of articulatory phonology. A coupling graph specifies phase coupling with coupling strengths c. Equal in-phase coupling forces result
in a stable relative phase configuration where /clo = /rel. The relative phases determine the relative timing of the activation of gestures that drive articulator synergies to achieve vocal
tract targets.

Fig. 2. Schematic illustrations of symmetric displacement patterns. (Left) CCV syllable C-center effect: initiations of consonantal gestures are displaced symmetrically from the initiation
of the vocalic gesture. (Right) Symmetric displacement of consonantal closure and release gestures in a CV syllable.
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opposite directions in time from the initiation of the vocalic ges-
ture. This pattern provides evidence for the coupled oscillators
extension to the theory of articulatory phonology (Browman &
Goldstein, 2000; Saltzman & Munhall, 1989; Saltzman, Nam,
Krivokapic, & Goldstein, 2008), and plays a role in accounts
of cross-linguistic and developmental phonological patterns
(Gafos & Goldstein, 2012; Goldstein, Byrd, & Saltzman,
2006; Shaw, Gafos, Hoole, & Zeroual, 2011; Tilsen, 2016).

The focus of the current study is the symmetric displace-
ment pattern in simplex CV syllables, shown in Fig. 2 (right).
The pattern applies to the initiations of consonantal constric-
tion and release gestures relative to the initiation of the vocalic
gesture. Importantly, the symmetry of the timing pattern is
approximate and statistical in nature: any particular production
is likely to deviate from symmetric displacement to some
degree.

From a theoretical perspective (Goldstein et al., 2006; Nam,
2007; Nam & Saltzman, 2003; Tilsen, 2013), the timing pattern
has been derived from equivalence of phase-coupling forces in
a system of oscillators, such as those depicted for a CV sylla-
ble in Fig. 3. Here clo, rel, and vow refer to planning oscillators
associated with the consonantal closure, consonantal release,
and vocalic gesture. An anti-phase coupling force between clo
and rel opposes in-phase coupling forces between clo-vow
and rel-vow. When the strengths of cclo,vow and crel,vow are
equal, the stabilized relative phases of the oscillators, /clo

and /rel, will also be equal, and hence the initiations of gestural
activation intervals will be equally displaced in opposite direc-
tions in time from the vocalic initiation, resulting in the symmet-
ric timing pattern dclo = drel (see Appendix A2 for model
equations and further detail).
Please cite this article in press as: Tilsen, S. Exertive modulation of speech and
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It is useful to estimate from empirical data both the common
frequency x of the oscillators and their relative phases /clo and
/rel, because the frequency x is hypothesized to reflect varia-
tion in exertive forces, and because the phases / provide a
frequency-normalized measure of deviation from symmetric
displacement. However, x and / cannot be jointly estimated
from observed timing intervals d without imposing an additional
constraint, since there are three unknown parameters {/clo,
/rel, x} but only two empirical measures {dclo, drel}, an under-
determined problem. To address this problem we impose a uni-
form coupling constraint, which represents the working
assumption that to a first approximation, in-phase and anti-
phase coupling strengths are equal. Hence we can estimate
x and / as in Eq. (1). Under the uniform coupling ansatz,
the stable equilibrium relative phases are /* = p/3. We can
define an order parameter U that represents deviation from
symmetric phasing (see Appendix A.2 for derivations and fur-
ther detail).

x̂ ¼ 1
3ðdclo þ drelÞ /̂ ¼ 2px̂d U ¼ /̂� p

3
ð1Þ
1.3. Exertive mechanisms and correlation of independent systems

As you read this paper, the actions of various autonomic
systems (regulating respiration, heart rate, glucose levels,
etc.) are changing over time. You may become drowsy, or per-
haps excited, or switch more or less rapidly between the two.
In all cases, what is certain is that the dynamics of exertive
mechanisms—i.e. attention, focus, arousal, motivation, effort,
etc.—are not entirely stationary. The same holds for a partici-
articulatory phasing. Journal of Phonetics (2017), http://dx.doi.org/10.1016/j.
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pant in an experiment, and so the fluctuations of systems
which regulate exertion are of potential interest—especially if
they alter the behavior of systems which control speech
production.

Exertive systems have been studied in a wide variety of
contexts. A recent theoretical approach of particular relevance
holds that more stable coordinative patterns involve not only
lower metabolic energy costs but also less activity in the cen-
tral nervous system (Lay, Sparrow, & O’Dwyer, 2005;
Temprado, Zanone, Monno, & Laurent, 1999; Zanone,
Monno, Temprado, & Laurent, 2001). Indeed, Zanone et al.
(2001) hypothesized that the same potential functions that
describe the stability of movement coordination may describe
levels of nervous system activity. Exertive mechanisms have
also been theorized to play a critical role in modulating skill
learning and memory consolidation (Carpenter & Grossberg,
1987). A likely consequence of fluctuations in exertive systems
is chaotic variation in movement timing; such variation has
been demonstrated in a number of studies: for example,
inter-stride intervals exhibit correlations on multiple timescales
(Hausdorff et al., 1996). It has been suggested that such vari-
ability is important for behavioral adaptability (Stergiou &
Decker, 2011; Stergiou, Harbourne, & Cavanaugh, 2006) and
may be associated with shifts from relatively more controlled
to relatively more automatic processing (Paus et al., 1997).

The reader should keep in mind that the concepts of exer-
tive mechanisms and exertive force are used here as heuristic
devices. These concepts facilitate analyses of the effects of
complex and not-well-defined cognitive systems associated
with attention, effort, arousal, motivation, focus, etc., which pre-
sumably influence motor control in numerous ways. The
heuristic simplification allows us to conflate the effects of exer-
tive mechanisms into a single variable, conceptualized as a
force acting on parameters of speech motor control. The esti-
mated frequency x of the planning oscillators is hypothesized
to be a correlate of exertion. This follows from a microscopic
task ensemblesmodel in which planning oscillators are viewed
as macroscopic descriptions of the coordinated spiking of neu-
rons in premotor ensembles associated with speech tasks (see
Section 4.1 for further detail).

Variation in exertive force should induce correlations
between speech motor systems. However, correlations can
also arise when there is a physical interaction between the sys-
tems which mediate control of outputs, such as with F0 and
intensity, which are controlled by the same anatomical struc-
tures and which interact aeroacoustically (Tilsen, 2016). To
conclusively test for the presence of exertive forces, only cor-
relations between physically independent systems should be
considered. It should be emphasized that although we hypoth-
esize correlations between system states, the predictions
relate to the observed outputs of those systems. Table 1 pro-
Table 1
Biomechanical interaction of systems.

Linguo-labial tasks Phonatio

Phonation (F0, I) Ø
Head movement Ø ?
Head posture Ø ?
Bilabial subtasks + Ø

[Ø]: negligible interaction. [+]: strong interaction. [?]: unknown interaction.
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vides an overview of several broad categories of systems rel-
evant to the current study, along with their degree of
mechanical independence.

The outputs of phonation, head movement, and head pos-
ture control have negligible interactions with linguo-labial tasks
and bilabial subtasks (cf. Section 2.4 for descriptions of vari-
ables in these categories). Phonatory correlations with vowel
height/tongue posture have been observed in some studies
(Ohala & Eukel, 1987; Whalen & Gick, 2001), yet these exhibit
speaker- and language-specific variations in effect directions
and are present only between high vs. low vowel categories;
within a vowel height category such effects have not been
reported. Articulatory tasks have been shown to interact with
body posture (i.e. supine vs. upright) (Stone et al., 2007;
Tiede, Masaki, & Vatikiotis-Bateson, 2000), but head posture
variation in an upright position has not been shown to influence
articulation. Head movements can be coordinated with speech
movements in some contexts (Goldenberg, Tiede, Honorof, &
Mooshammer, 2014; Tiede & Goldenberg, 2015), and can
accompany pitch excursions (Ishi, Ishiguro, & Hagita, 2014;
Krivokapić, 2014), but no studies have examined whether
head movement has inertial consequences for the jaw or lips.
Because of their relatively small masses, inertial forces on
articulators are likely negligible compared to forces generated
by muscle contraction. Conversely, the relative massiveness of
the head renders head posture and head movement immune
to inertial effects from articulators.

In sum, many of the outputs of systems measured in this
experiment can be presumed to be nearly independent: the
effects of their interactions are small relative to other sources
of variance, and hence correlations that are observed between
them implicate a non-mechanical source, such as an exertive
force.
1.4. Hypotheses

There are two primary hypotheses tested in this study: the
exertive modulation hypothesis and the equilibration hypothe-
sis. These hypotheses are not mutually exclusive and make
a variety of predictions detailed below. Some of these predic-
tions are best viewed in relation to the autocorrelation scaling
functions shown in Fig. 1. It is assumed that observations are
subject to external Gaussian noise, which results from mea-
surement procedures and/or non-exertive sources of noise in
the nervous system.

Exertive modulation hypothesis: speech motor control sys-
tems are modulated globally by exertive forces. Exertive mech-
anisms are assumed to change slowly relative to the
observation scale, and hence should induce random walk-
like correlations between past and future states in independent
systems. Analyses of autocorrelation scaling functions with
n (F0, I) Head movement Head posture

?
Ø Ø

articulatory phasing. Journal of Phonetics (2017), http://dx.doi.org/10.1016/j.
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regard to this hypothesis focus on asymmetry in movement
phasing (i.e. U, cf. Section 1.2), because this most directly rep-
resents the interaction of planning oscillators theorized to be
responsible for symmetric displacement. The following predic-
tions are made:

(a) Lag-1 autocorrelations of response parameters on the observa-
tion scale will have non-zero positive values. Lag-1 autocorrela-
tion of the phase asymmetry order parameter U will increase
over short analysis scales. The increase is predicted because
the coarse-graining procedure integrates out Gaussian fluctua-
tions more effectively as the coarse-graining timescale is
increased (see Fig. 1).

(b) Correlations between outputs of mechanically independent sys-
tems will be observed. Because exertive forces are global—i.e.
they modulate all motor control systems—we predict correla-
tions between the outputs of independent systems.

Equilibration hypothesis: mechanisms governing phase-
coupling interactions between oscillators promote
equilibrium-like behavior on long timescales, and variation in
exertive force is reflected in the estimated planning oscillator
frequency x. This follows from a task ensembles interpretation
of planning oscillators elaborated in Section 4.1. Fluctuations
in exertive force are viewed as perturbations of planning sys-
tems. The following predictions are made:

(a) Lag-1 autocorrelations will decrease on relatively long analysis
scales. This follows from viewing the long-timescale equilibra-
tion mechanism as a quadratic potential in which a random walk
with Gaussian noise occurs (see Fig. 1).

(b) Planning oscillator frequency x will correlate with variability and
covariability in articulatory timing. This follows from viewing x as
a proxy for exertive force. A stochastic model of this phe-
nomenon is presented in Section 4.1.

2. Method

Rather than examining conditioned variation, i.e. variation
induced by experimentally manipulated factors, the current
study investigates unconditioned variation, i.e. variation that
emerges quasi-spontaneously. Speakers were encouraged
by a variety of design features to produce a single target form
(ee-PAH) exactly the same way throughout an entire session.
The promotion of consistency and absence of conditioning
manipulations serve the goals of testing the exertive modula-
tion and equilibration hypotheses: long, uninterrupted observa-
tion sequences are desirable for investigating autocorrelation
and system dynamics.
2.1. Participants and task

Data from six participants/sessions are presented here. All
but one of the participants were native speakers of English,
and none had any speech or hearing disorders. The author
participated in one of the sessions. Note that four additional
sessions with alternative designs were conducted, but are
not reported. Participants in the study were told that they would
say the nonword “ee-PAH”, [i'pha:], with a weak-strong stress
pattern, on every trial of the experiment. They were to
instructed to try to do this exactly the same way every time.
In each session, 400 productions were collected.
Please cite this article in press as: Tilsen, S. Exertive modulation of speech and
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Sessions were conducted in a quiet room in the Cornell
Phonetics Laboratory. Participants were seated approximately
1.5 m from a computer monitor on which a response cue and
occasional non-specific performance feedback were delivered.
An electromagnetic articulograph (EMA) collected articulatory
data (NDI Wave System, Berry 2011). Articulator sensors were
adhered midsagittally on the lower and upper lip (LL, UL), on
the lower incisors to capture jaw movement (JAW), and on
the tongue body (TB) approximately 6–7 cm from the tongue
tip. Reference sensors were positioned on the nasion (NAS)
and left and right mastoid processes (MPR, MPL). A shotgun
microphone was positioned about 1.25 m from the participant.
Experimental sessions consisted of a setup phase (approxi-
mately 25 min.) and a data collection phase (approximately
1 h).

Each trial began with a response cue, the appearance of a
green box on the stimulus monitor (85% of screen width and
height). The cue remained on the screen for 2500 ms. Partici-
pants were told to produce the response when the cue
appears, but not to try to respond as quickly as possible, i.e.
not as an immediate reaction. They were also told to be sure
to respond before the cue disappeared. A uniformly distributed
random intertrial interval of 1500–7500 ms occurred before the
next response cue. The randomization of the intertrial interval,
along with its relatively large range, served the purpose of dis-
couraging list-reading and rhythmic effects on the production of
the response. Every 10 trials the participant received non-
specific consistency feedback (see below), and after every
block of 50 trials there was a 15–30 s break during which the
experimenter told the participant to adjust their posture, if nec-
essary. Note that participants often adjusted their posture
between blocks or between trials without explicit instruction.
2.2. Response design

The target response [i'pha:] was designed to provide robust
measures of the relative timing of coordinated movements, to
diminish effects of confounding biomechanical interactions,
and to preclude effects of anticipatory posturing on the mea-
sures of interest. The response contains four oral articulatory
tasks, three of which are precisely coordinated: bilabial clo-
sure, pharyngeal constriction for [a], and bilabial release.
These are preceded by a palatal constriction for [i] made with
the tongue body. A disyllable rather than monosyllable was
chosen because the initial vowel prevents pre-response antic-
ipatory posturing from influencing the movements of interest
(Tilsen et al., 2016).

The vowels [i] and [a] were chosen because they promote a
relatively large magnitude high/front to low/back movement of
the tongue body, which facilitates automated processing and
provides relatively more space for variability in movement
range and speed. A bilabial consonant was chosen because
it does not specify a lingual movement, and therefore mini-
mizes biomechanical interactions with the vowels. The bilabial
release movement is robustly identifiable because the lips are
opened quickly and widely in order to support the production of
the vowel [a]. The trade-off for having an [i]–[a] transition is that
the bilabial closure movement is smaller/lower in magnitude/
velocity because the jaw is already raised for the [i]. This clo-
articulatory phasing. Journal of Phonetics (2017), http://dx.doi.org/10.1016/j.
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Table 2
Categorization and description of response variables.

Head movement
Translational and rotational avg. speed HdMovtrans,rot (mm/t), (rad/t): average magnitude of translation/rotation per second, calculated in a 500 ms peri-response window
Translational movement speed

maximum
HdMovspd (mm/t): maximum RMS velocity of translational head movement in the peri-response window

Head posture
Head posture and orientation HdPospos,ang (mm), (rad): mean value of midsagittal angle and first principal component of head position

Intergestural timing
Movement intervals dclo,rel (ms) time intervals between the initiations of bilabial closure, vocalic movement, and bilabial release

Movement speed
Maximal speed MovSpdclo,vow,

rel

(mm/s) maximum midsagittal RMS velocity of bilabial closure, vocalic, and bilabial release movements

Movement targets
Target position MovTrgXi,a (mm) vertical and horizontal positions of TB at [a] and [i] target achievements

MovTrgYi,a

Bilabial subtasks
Articulator contrib. to bilabial task AcCloUL,LL,JAW (proportion) contributions of vertical movement of UL, LL, and JAW to LA, in closure and release phases

AcRelUL,LL,JAW

Acoustic intensity
Intensity I,a,resp (dB): RMS intensity, on a decibel scale, calculated for [i], [a], and the whole response

F0 and spectral tilt
Fundamental frequency F0avg,rng (Hz): average and range of F0 over a 50 ms interval centered on maximum acoustic energy in [a]
Spectral tilt H12avg,rng Spectral tilt (dB): average and range of H1–H2 over a 50 ms interval centered on maximum acoustic energy in [a]
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sure movement is nonetheless robustly identifiable in kine-
matic data.

2.3. Non-specific consistency feedback

Participants were periodically given non-specific feedback
regarding the consistency of their responses. Every 10 trials
the participant received a consistency score on a scale from
0 to 100, based on articulatory similarity of responses over
the last 10 trials. The score was shown on the stimulus monitor
for 2.5 s. Participants were given no specific information about
the feedback score other than being told that it ranged from 0
to 100, represented consistency in recent responses, and that
scores over 50 were good.

Feedback was designed to be uninformative (i.e. non-
specific) with regard to the composition of responses, and to
serve as motivation rather than to shape response patterns
directly. In a previous study (Tilsen, 2015) presentation of feed-
back after every trial may have led participants to make arbi-
trary, unpredictable associations between their responses
and feedback scores. Here feedback was provided every 10
trials in order to preclude arbitrary associations between
scores and responses.

Consistency scores were derived from the average pairwise
response distance over the preceding 10 responses, calcu-
lated as follows. The lag of maximal cross-correlation of artic-
ulator sensor position data (corrected for head movement)
from a pair of trials was used for alignment. Then the Euclidean
distance between sensor positions was computed over a
1000 ms window centered on the time of maximal speed in
the movement of the tongue body from an [i] to [a] posture.
This distance metric was averaged over all pairwise combina-
tions of the past 10 trials. Consistency scores were obtained by
calculating the z-score of the most recent average distance rel-
ative to all previous ones; the score was defined as the inverse
normal cumulative distribution function of the z-score, re-
Please cite this article in press as: Tilsen, S. Exertive modulation of speech and
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scaled from 0 to 100. The consistency score is thus a time-
varying, participant-relative index of performance, rather than
an absolute metric of consistency.

2.4. Data processing procedures

Measures analyzed in this study are summarized in Table 2.
Sensor position data from the NDI Wave EMA (100 Hz) were
smoothed with a 4th order Butterworth low-pass filter. A 5 Hz
cutoff was used for reference sensors (NAS, MPR, MPL) and
a 10 Hz cutoff for articulator sensors (UL, LL, JAW, TB). The
positions of the articulator sensors were corrected for head
movement. Acoustic data were collected at 22,050 Hz with a
shotgun microphone. To facilitate automated data processing,
responses were acoustically segmented with forced alignment
using the Hidden Markov Model Toolkit (HTK) (Young et al.,
1997). For each session, responses from 10 trials, selected
randomly for 10 equal-size epochs from a session, were man-
ually labeled for the purpose of training HMMs. From these
training data 5-state HMMs of MFCC vectors (16 coefficients,
20 ms window) were estimated for each segment ([i], [p], [a]).
These HMMs were subsequently used for forced alignment
of the remaining trials.

Three metrics of head movement in the vicinity of the
response were derived from the reference sensors. Head posi-
tion was defined as the location in 3-dimensional transmitter
coordinates of the centroid of the three reference sensors
(NAS, MPR, MPL). Head orientation was defined as the angle
of the MPR-MPL midpoint-to-NAS line on the triangular surface
of the reference basis, in relation to the vertical plane of the
transmitter (i.e. pitch). This is approximately the head angle
in the mid-sagittal plane of the participant. Rotational move-
ments in coronal and axial planes (i.e. roll and yaw) were not
analyzed because these tend to be small. Translational and
rotational movements of the head was measured in a peri-
response period as the average change in position/angle per
articulatory phasing. Journal of Phonetics (2017), http://dx.doi.org/10.1016/j.
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second. The peri-response period was a 500 ms window of
time centered on the point of maximum velocity of the lower
lip in the release. By restricting the estimation of head move-
ment to this period of time, the measurements index head
movement associated with response production, rather than
head movement associated with sporadic postural adjust-
ments occurring between responses. A maximum speed mea-
sure was estimated as the maximum translational RMS speed
of the head in the peri-response period.

Two head posture measures were calculated for each
response, one indexing head position, the other head angle.
Head position principal components were calculated from the
peri-response head centroid position data from each session.
The mean value of the first principal component over the
peri-response window was used to estimate head position;
the mean value of the midsagittal angle in this period was used
to estimate head orientation.

Two intergestural timing measures, dclo and drel, were
obtained by estimating movement initiation times (tclo, tvow, trel)
from each trial. To facilitate automatic identification of these,
articulator RMS velocity time-series were aligned iteratively
using maximum cross-correlation with neighboring trials as a
criterion. Closure, vowel, and release movement initiations
were estimated as the times of maximal absolute acceleration
in sigmoidal fits of the first principal components of LL and TB.
Principal components were estimated with a 200 ms window
centered on the velocity extrema associated with labial clo-
sure, release, and tongue body retraction/lowering. Examples
of the first principal components of sensors and corresponding
acceleration extrema are shown in Fig. 4. Target [i] and [a]
positions were defined as the horizontal and vertical positions
of the TB sensor when TB RMS velocity was at a minimum pre-
ceding/following the movement. Model quantities were esti-
mated from dclo and drel as described in Appendix A.2.

An articulator contribution index (ACI) was defined to char-
acterize bilabial subtasks, i.e. the relative contributions of UL,
LL, and JAW to the vertical lip aperture (LA) tasks of closure
and release. Closure and release periods were identified in
vertical LA acceleration extrema as the period from movement
onset to target. Within each period, the ACI of an articulator
Fig. 4. Example production of ee-PAH. (Left): tongue body and lower lip trajectories in midsag
LL sensors; acceleration extrema.
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was defined as the ratio of change in its vertical position, from
start to end of the period, to the total change in LA (see Fig. 5).
For LL the vertical component of JAW position was subtracted.
Thus the UL, LL, and JAW ACIs always sum to one.

Acoustic intensity measures associated with [i], [a], and the
whole response were extracted from each trial, by calculating
RMS intensity in the following windows. For [i]: 100 ms before
[i] voicing onset up to the [a] voicing onset. For [a]: [a] voicing
onset until 350 ms later. For the whole response: from the start
of the [i] window to the end of the [a] window. The robust auto-
mated pitch tracking algorithm (RAPT) implemented in the
Matlab Voicebox toolbox (Brookes, 1997) was used to obtain
estimates of the rate of vocal fold vibration during the segment
[a]. This algorithm uses normalized cross-correlation (Talkin,
1995); the correlation window size was 7.5/15 ms for female/-
male participants. To avoid bias from microprosodic artifacts
associated with voicing onset or offset, F0 averages and
ranges were derived from a 50 ms window centered on the
point of maximal acoustic energy in [a]. Spectral tilt averages
and ranges were obtained from the same window as follows.
The signal was split into 30 ms frames in 1 ms steps and a
4096-point power spectrum was estimated for each frame.
Amplitudes of the first two harmonics (H1, H2) were extracted
using the F0 estimate to constrain the identification of har-
monic peaks.

2.5. Data analysis procedures

Section 3.1 examines lag-1 autocorrelations (r1) in
observation-scale time series of response variables. The max-
imal timescale (sacmax) of non-stationary features in each time
series was measured by determining the trial lag at which a
spline fit of the autocorrelation function fell below the upper
limit of the 95% confidence interval for an uncorrelated white

noise process, which is defined as
ffiffiffi
2

p
erf�1ð0:95Þð1= ffiffiffiffi

N
p Þ,

where N is the length of the time series and erf�1 is the inverse
Gaussian error function. Correlations and autocorrelations
reported in Sections 3.2 and 3.3 were obtained using a
coarse-graining procedure in which observations were aver-
aged within adjacent, non-overlapping observation windows.
ittal plane. (Right, top to bottom): acoustic waveform; 1st principal components of TB and
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Fig. 5. Illustration of articulator contribution indices (ACIs). ACIs were defined for UL, LL, and JAW for both the closure and release gestures. The ACI is the ratio of change in the
vertical position of an articulator (i.e. DUL, DLL, DJAW) to change in vertical lip aperture from gesture onset to target (DLA).

Fig. 6. Example of coarse-graining. Coarse-grained dclo on timescales of 1 (observation scale), 5, 20, and 40 are shown.
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Fig. 6 illustrates the output of coarse-graining; note that the
length of a coarse-grained time series is reduced by a factor
of s, i.e. the number of trials in the averaging window.

The correlation analyses conducted in Section 3.2 do not
involve statistical inferences at the level of pairwise combina-
tions of variables, but rather, treat correlations as samples from
a population of correlations. A total of 27 variables, grouped
into 8 categories (cf. Table 2), were included in correlation
analyses. Correlations were calculated only for inter-category
pairs. This resulted in the estimation of 313 unique correlations
per session, and a total of 1878 correlations over the six ses-
sions. Fig. 8 shows R2 of correlations calculated from coarse-
grained time-series with a timescale of s = 20, which was
approximately half of the median autocorrelation timescale
(sacmax). Qualitatively similar patterns of R2 distributions were
found for a fairly large range of s, hence the analysis does
not depend crucially on choice of scale. To obtain confidence
limits for uncorrelated processes at the level of group-wise
variable pairs, a Monte Carlo permutation procedure was used
in which 95% confidence regions for R2 were calculated from
1000 random permutations for each variable pair. The hierar-
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chical clustering shown in Fig. 9 was obtained by using the
mean between-group correlation strengths as a measure of
similarity (the distance metric was 1-R2, with R2 averaged over
sessions). Empirical autocorrelation scaling functions in
Fig. 10 are smoothed with a window of s = 3 in order to empha-
size the global shapes of the functions.
3. Results

3.1. Positive lag-1 autocorrelation of response variables

Many of the response variable time series obtained in this
study exhibited positive lag-1 autocorrelations (r1) on the
observation timescale. This is consistent with the predictions
of the exertive modulation hypothesis and implicates an exer-
tive mechanism with a random walk-like influence on articula-
tory control systems.

Distributions of r1 and sacmax from all sessions are shown in
Fig. 7. About 92% (149/162) of all response variable time ser-
ies had positive r1 greater than chance levels (gray band, cf.
Section 2.5). Fig. 7 also breaks down r1 and sacmax by sessions
articulatory phasing. Journal of Phonetics (2017), http://dx.doi.org/10.1016/j.
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Fig. 8. Distributions of correlation strengths. The vertical axis represents R2 from pairwise correlations of coarse-grained response variables (s = 20). Red circles/bars show the
median/5th–95th percentile range for R2 from each combination of variable categories. Gray bands show 95% confidence regions for uncorrelated variables, estimated from random
permutations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Hierarchical clustering of response variables. Distance matrix derived from strengths of pairwise correlations of coarse-grained measures (s = 20), with distance 1 � R2.

Fig. 7. Summary of lag-1 autocorrelations (r1) and autocorrelation timescales (sacmax). (Top panels) Experiment-wide histograms of r1 and sacmax. (Bottom panels) By-session and by-
variable category distributions. Gray bands indicate 95% confidence intervals for the r1 of stationary white noise.
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and variable categories. Within each session the median r1
and even the 25th percentile r1 were well above chance val-
ues. All variable categories exhibited positive r1. Head position
had especially high r1. In contrast, peri-response head move-
ment r1 were closer to chance levels. Median sacmax by session
ranged from 25 to 59 trials; the median across all variables/
sessions was 37 trials. Head movement also had the lowest
median sacmax.
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3.2. Correlations between response variables

A key prediction of the exertive modulation hypothesis was
upheld: response variables associated with independent sys-
tems were correlated above chance. Fig. 8 shows median
and 5th–95th percentile ranges of R2 values (red lines) from
correlations calculated by session and grouped by variable
categories. For all category pairs there were above-chance
articulatory phasing. Journal of Phonetics (2017), http://dx.doi.org/10.1016/j.
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Fig. 10. Empirical vs. simulated lag-1 autocorrelations. Filled areas show ±1r calculated from 10,000 random simulations.
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correlations, and for all but one category pair the mean corre-
lation strengths (red circles) were greater than expected by
chance (gray band, estimated with a Monte Carlo procedure,
cf. Section 2.5). Although not all category pairs in the analysis
contain variables from mechanically independent systems,
nearly all of the pairs that are independent (cf. Section 1.4)
had a majority of correlations that were significant. In particular,
the intensity measures and the F0 and H12 category of mea-
sures correlate with various categories of articulatory mea-
sures (MovtSpd, MovtTrg, d, LASubTask).

Several interesting relations become evident when
response variables are clustered hierarchically by their correla-
tion strengths, as shown in Fig. 9. Cluster nodes formed lower
down in the tree represent variables/sets of variables that are
on average more strongly correlated. In general, response
variables from the same category are grouped early on by
the clustering algorithm, but there are some noteworthy pat-
terns and exceptions.

Head movement variables and variables involving F0 and
H12 are the least strongly correlated with other variables and
hence are last to be merged into the tree. In contrast, head
posture variables correlate more strongly with articulatory vari-
ables, specifically the speed of the release movement and the
contribution of the jaw to the release. These findings are con-
sistent with the disparity in lag-1 autocorrelation distributions
between head movement and head posture variables, and
suggest that exertive fluctuations manifest more strongly in
head posture than in peri-response head movement. Intensity
variables are more strongly correlated with a subset of vowel/-
closure movement speed and [a] target variables than with
other phonation-related variables involving F0 or H12. The
contribution of the jaw to bilabial closure (AciCloJAW) is more
strongly correlated with the speed of the release movement
than with other closure ACIs. Movement target variables for
[i] are not strongly correlated with movement target variables
for [a], the latter are instead correlated more strongly with
vowel/closure movement speed.

3.3. Autocorrelation scaling functions

Empirical autocorrelation scaling functions are consistent
with predictions of the exertive modulation hypothesis but pro-
vide mixed support for the equilibration hypothesis. The exer-
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tive modulation hypothesis predicted that intermediate
positive r1 in the order parameter U would increase on rela-
tively short timescales. Indeed, as shown in Fig. 10, abrupt
increases in r1 at small analysis scales (scg < 5) were observed
for all sessions. The cause of these abrupt increases is the
smoothing effect of coarse graining on the Gaussian noise
component of the process, which diminishes external noise
and enhances the relative influence of the random walk
component.

Three of the six sessions exhibited r1 consistent with the
equilibration hypothesis. This hypothesis predicted decreases
of r1 on long timescales, which would arise from long-term
effects of forces promoting symmetric coupling. Three of the
autocorrelation scaling functions do indeed have substantial
decreases for s > 20; however the other three fail to exhibit this
feature. Hence the data provide mixed support for the pres-
ence of forces promoting symmetric coupling.

There are two additional reasons why these results are not
conclusive. First, finite sample length effects result in wide con-
fidence intervals for autocorrelation scaling functions at long
timescales, along with biases which reduce autocorrelation at
long scales. Second, some aspects of the simulated scaling
functions depend on parameters which are unknown (cf.
Appendix A.1), and hence multiple models can produce fits
of similar quality between empirical and simulated data. Fur-
ther considerations in interpreting these data are discussed
in Section 4.
3.4. Oscillator frequency and exertion regimes

Evidence for phase equilibration is less ambiguous with
regard to the second prediction of the hypothesis, that oscilla-
tor frequency x should correlate with variances and correla-
tions of timing intervals d. Indeed, there appear to be
qualitatively different regimes of variation in dclo and drel, which
correlate with estimated x. Fig. 11 shows heat maps of the joint
distributions of dclo and drel. In sessions P03, P05, and P06
there were moderate/weak negative correlations. In session
P02 there was a weak positive correlation. These patterns
are potentially misleading, however, because they may
obscure transient fluctuations in correlation associated with
exertive modulation.
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Fig. 11. Joint dclo, drel distributions for each session. (Left): 50th percentile contours for all sessions. (Right): heat-maps of joint distributions by session. Diagonal lines represent positive
and negative correlation.

Fig. 12. Relations between x and correlation and variance of timing intervals. (Left): relation between x and the correlation of dclo and drel. (Right): relation between x and variance of
dclo. Regression lines are shown for each session (colors) and across all sessions (dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

S. Tilsen / Journal of Phonetics xxx (2017) xxx–xxx 11
The structure of variation in d becomes more apparent
when analyzed over time and in relation to the estimated fre-
quency x. Fig. 12 shows the relations between x and the cor-
relation of dclo and drel, and between x and the variance of dclo.
The correlations and standard deviations were estimated in
non-overlapping 40-trial windows. Oscillator frequency x is a
fairly good predictor of corr(d) and d variance: the x-corr(d) cor-
relation had an R2 of 0.67, the x-variance(dclo) correlation R2

was 0.37, and the x-variance(drel) correlation R2 was 0.46.
Under the hypothesis that x is associated with exertive

force, the within- and between-speaker variation in Fig. 12 sug-
gests that there were two qualitatively different exertion
regimes. In P01 and P02, where x was low, correlation and
variances of d were relatively high. In P03, P05, and P06,
higher x were associated with negative corr(d) and low vari-
ance dclo and drel. In two of the sessions, P01 and P04, regimes
of both positive and negative correlation are observed. When
examined temporally, it is evident that P01 began the session
with moderate negative correlations, but after a while transi-
tioned to a regime of weak/moderate positive correlation.
P04 produced negative correlations through most of the ses-
sion, but midway through entered into a transient epoch in
which positive correlations were observed. In addition to the
across-session/participant pattern, similar relations between
x and d are observed within most of the sessions (cf.
participant-specific regression lines in Fig. 12).
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Overall, the x–d relations suggest a distinction between two
regimes: a high-x, high-exertion regime in which movements
are tightly coordinated, and a low-x, low-exertion regime with
more variability. We consider this interpretation in further detail
below and discuss the main results of the study.
4. Discussion

Support for the exertive modulation hypothesis was
obtained in three forms: (i) positive lag-1 autocorrelation in
response variables; (ii) an increasing autocorrelation scaling
function for the phase asymmetry order parameter U on
short timescales; and (iii) pervasive correlations between
variables associated with independent motor systems. Mixed
support for the equilibration hypothesis was observed:
autocorrelation scaling functions for three of six sessions
exhibited the predicted decrease in the autocorrelation at
long timescales. The equilibration hypothesis was supported
by correlations between estimated planning oscillator
frequency x and the variability and covariability of timing
intervals dclo/drel. Below we elaborate on the interpretation
of these results, beginning with the presentation of a
microscopic model of planning oscillators which elucidates
the conceptual connection between frequency and
exertion.
articulatory phasing. Journal of Phonetics (2017), http://dx.doi.org/10.1016/j.
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4.1. Exertion regimes in a task ensembles model of planning oscillators

To model exertion effects, we begin by associating each
planning oscillator (closure, vowel, and release) with an
ensemble of neurons, i.e. a task ensemble. The coupled oscil-
lators model is based on the notion that there is an intrinsic
timeframe or virtual cycle associated with planning an aperi-
odic movement (Fowler, 1980; Kelso & Tuller, 1987). In the
microscopic task ensembles conception these cycles are inter-
preted as macroscopic (low-dimensional) approximations of
the integrated spiking rates of large populations of neurons
(cf. Fig. 13A). When excited by an external source (e.g. frontal
systems which govern the intention to speak), the neurons in
an ensemble exhibit a collective oscillation, which is possible
because of reciprocal interactions with other systems and/or
within-ensemble intrinsic dynamics associated with neuronal
conduction delays (Izhikevich, 2006, 2007).

Prior to being in the excited, oscillatory state, the ensembles
are near a critical point: a sufficient amount of external excita-
tion induces a phase transition to the regime of collective oscil-
lation. However, merely entering this excited state does not
entail movement. A selection-thresholding process not directly
modeled here determines whether the excited ensembles lead
to movement. We will assume (1) that the three relevant task
ensembles (clo, vow, rel) surpass the selection threshold dur-
ing the same oscillatory cycle, and (2) that oscillator relative
phases have stabilized prior to this. These assumptions are
easy to motivate by consideration of the self-paced nature of
the response along with empirical observations, and it follows
from these assumptions that oscillator frequency and relative
phases determine relative timing.

The coupling interactions between ensembles are associ-
ated with projections between ensembles. In-phase and anti-
phase coupling modes derive from the balance of interensem-
ble excitatory-to-excitatory and excitatory-to-inhibitory projec-
tions. In-phase coupling occurs when there are, in a pair of
ensembles, a relatively large number of excitatory neurons in
one ensemble that project to excitatory neurons in the other,
and vice versa. In this case the oscillator phases that corre-
spond to maximal spiking rate will tend to align closely in time.
Fig. 13. Exertion in the task ensembles model of planning oscillators. (A) Task-associated ens
spiking that macroscopically resembles planning oscillations. (B) Schematization of macroscop
c� represent in-phase and anti-phase coupling forces, respectively. (C) Comparison of d var

Please cite this article in press as: Tilsen, S. Exertive modulation of speech and

wocn.2017.03.001
In contrast, anti-phase coupling occurs when there are rela-
tively many excitatory-to-inhibitory projections between ensem-
bles. The maximally depolarized phase of one ensemble will
tend to align with the minimally depolarized phase of the other.
Note that inhibitory connections are assumed to be predomi-
nantly local, i.e. within ensemble. Thus when the excitatory neu-
rons of ensemble A project to the inhibitory neurons in ensemble
B, excitation of A transiently diminishes excitation of B.

There are several important postulates which connect the
microscopic and macroscopic levels of description, and which
allow us to relate coupling forces (c) to oscillator frequency (x).
These postulates are based on the idea that task ensembles
can vary in size, i.e. in the number of excitatory neurons which
participate in the ensemble.

Exertive force (E) and ensemble size (N): exertive force is concep-
tualized as a global modulation of the sizes of task ensembles, as
shown in Fig. 13B. Increasing E increases N.
Exertive force (E) and oscillator frequency (x): increasing E causes
oscillator frequency to increase.
Ensemble size (N) and coupling strength (c): increasing N
increases c, because a larger ensemble will have more projections
to other ensembles.

The postulates maintain that fluctuations in exertive force
influence ensemble size and oscillator frequency. Because of
the relation between ensemble size and coupling strength,
increasing exertion also increases coupling strength. Further-
more, we can treat x as a proxy for exertive force and model
the effect of x on coupling strengths.

Justification for modeling exertion as a global modulation is
based on the empirical observations: the nonstationarity of
response variables (i.e. positive lag-1 autocorrelations) and
pervasive correlations between independent systems reported
in Sections 3.1 and 3.2 argue in favor of a shared modulation
rather than parallel, independent modulations. However,
because the strengths of the correlations vary substantially
across variable pairs, it is reasonable to infer that there is some
variation in the extent to which ensembles respond to the glo-
bal exertive force.
embles of excitatory and inhibitory neurons respond to external excitation with collective
ic parameters: ensemble size, exertive force, susceptibility, and coupling strength. c+ and
iance/covariance profiles in low exertion and high exertion states. D = dclo + drel.
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We model variation in ensemble responses to exertive fluc-
tuations with ensemble-specific susceptibilities v. The suscep-
tibility v describes how much ensemble size N increases as the
exertive force increases, i.e. N = vE. We allow for system-
specific susceptibilities: vclo, vvow, vrel, and system-specific
ensemble sizes: Nclo, Nvow, Nrel.

For conceptual simplicity, each ensemble is hypothesized to
have a ground state ensemble size (N0), i.e. an ensemble size
associated with minimum E. Thus the lowest x observed in the
experiment (1.42 Hz) quantifies the value of E when ensem-
bles are in the ground state. To assess the ability of this model
to capture empirical patterns, model simulations were fit to the
endpoints of across-subject linear regressions of the correla-
tion and variance data from Fig. 12. There was a total of four
parameters, but only two of these are critical to producing
the qualitative relations between frequency and timing
variability:

1. vC: the susceptibility of closure and release (vV was set to 1).
2. N�C: the ground-state ensemble size of closure and release (N0

V

was set to 1).

The remaining two parameters scale the effect of x on N
and determine the amplitude of Gaussian noise in coupling
strengths, allowing for more quantitatively precise fits of the
empirical data (see Appendix A.3 for further detail).

In the absence of noise, the equality of in-phase coupling
strengths results in symmetric temporal displacement. How-
ever, the model makes use of noise in coupling strengths to
simulate the empirical correlation and variance patterns.
Fig. 14 below shows the model fit of the empirical data, along
with linear regressions. The model produces a fairly good
match to both the correlation and variance data, although the
variance of dclo appears to be slightly overestimated at low x
and underestimated at high x.

The model accounts for the empirical correlation and vari-
ance as follows. Ground state ensemble size is relatively small
for the consonantal ensembles, i.e. N�C < 1, but the suscepti-
bility of consonantal ensembles is relatively high, vC > 1. Differ-
ences in E result in different patterns of coupling strength,
which impact correlation and variances in the following way:

Low exertion regime. At low x, clo and rel ensembles are
smaller than vow, i.e. NC < NV, and so anti-phase coupling
between clo and rel is relatively weak compared to in-phase
Fig. 14. Model fits of empirical data. (Left) Relation between x and correlation of dclo and dre
model simulations.
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coupling between clo-vow and rel-vow. Hence Gaussian noise
that mimics trial-to-trial fluctuations in coupling strengths
results in var(D) > var(dclo) + var(drel), and it follows that corr
(dclo, drel) > 0. (Note that D = dclo + drel, cf. Fig. 13C). This low-
exertion regime corresponds to the empirical patterns from
P02 and P01, shown in Fig. 12.

High exertion regime. At high x, the greater susceptibility of
consonantal ensembles entails that NC > NV, and so anti-
phase coupling becomes relatively stronger than in-phase cou-
pling. Coupling strength fluctuations then result in var(D) < var
(dclo) + var(drel), and it follows that corr(dclo, drel) < 0. This corre-
sponds to the patterns observed from P03 to P06, shown in
Fig. 12.

The mechanism behind differences between the low- and
high-exertion regimes involves the relative strength of the
anti-phase and in-phase coupling forces. Strong anti-phase
coupling is associated with high-x and less variable/more
stable D (=dclo + drel), while weak anti-phase coupling is asso-
ciated with low-x and more variable/less stable D. These differ-
ences in stability are reflected in Fig. 13B in the comparison of
high-x and low-x phase coupling potentials: the valley associ-
ated with the equilibrium / is much steeper and narrower when
in the high-x regime with strong anti-phase coupling. Indeed,
relations between the slopes of potential functions governing
movement timing and variability of movement have been impli-
cated in a variety of contexts (Goldstein et al., 2006; Haken,
Kelso, & Bunz, 1985; Tilsen, 2009).

The mechanism that is indirectly responsible for differences
between low- and high-exertion regimes is ensemble-specific
susceptibility to exertive forces. Although consonantal ensem-
bles are smaller at low exertion, they respond more than voca-
lic ensembles to fluctuations, and hence as exertion increases,
the strength of the anti-phase interaction between consonantal
planning systems grows more than the strength of the in-phase
interactions.

The circumstance that anti-phase coupling is more influ-
enced by exertion makes intuitive sense when considering per-
ceptual recoverability in fast speech. In general, higher arousal
might be associated with faster speech; accordingly, high val-
ues of E (and x) correspond to shorter intervals between
movement initiations. However, in faster speech there is a
greater potential for gestural overlap to diminish the perceptual
recoverability of linguistically relevant information in the signal
(Chitoran & Goldstein, 2006). Augmented anti-phase coupling
l. (Right) Relation between x and variance of dclo. Confidence bars show ±1r from 100
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mitigates against this effect: stronger anti-phase coupling
increases equilibrium /; this makes timing intervals d longer
than they would be if coupling strengths and x were indepen-
dent. In other words, the relation between x and anti-phase
coupling is such that compression of d is resisted as x
increases. Note that while x may be correlated with speech
rate, x should not be viewed as a speech rate parameter: E
and x must to some degree be independent of speech rate
because we can speak slowly in high-exertion states.

An alternative but problematic interpretation of the variability
patterns involves a duration-variance relation. In general, vari-
ance in the performance and estimation of time intervals is
positively correlated with the duration of those intervals. This
relation could explain the low variability in D associated with
high-exertion because D is shorter in this regime, but it does
not account for why var(D) < var(dclo) + var(drel); in other words,
the d intervals should also reflect the duration-variance rela-
tion, but they do not. Moreover, the interval durations under
consideration here are well below the threshold where
duration-variance relations are typically observed: there is a
wealth of evidence that, at least in interval tapping and related
manual tasks, variance is constant in performance of intervals
below 250–300 ms (Peters, 1989; Wing & Kristofferson,
1973a, 1973b). This has been interpreted to indicate that short
intervals are necessarily controlled automatically, i.e. coordi-
nated. Hence the variability patterns cannot be interpreted as
the consequence of a duration-variance relation.

The task ensembles model can be extended to account for
empirically observed asymmetries in timing intervals. Although
the across-participant central tendency is symmetric displace-
ment, i.e. dclo � drel, the joint d distributions in Fig. 11 for P02,
P03, and P05 exhibit deviations from perfect symmetric dis-
placement. Although these deviations are not very large (they
are on the order of 20 ms), an explanation is nonetheless
desirable. Such deviations can be modeled straightforwardly
by allowing for the ground-state ensemble sizes N0

Clo and N0
rel

to differ. For example, P02 has a bias such that dclo < drel. This
bias can be modeled by positing that N0

rel < N�Clo, which makes
cclo-vow > crel-vow. In other words, the closure ensemble is more
strongly coupled to the vowel than the release ensemble
because it is larger. Syllable stress might also play a role in
the inequality of coupling forces.

It is worth pointing out that the model described above is
just one of many possible models of the empirical patterns.
There are alternative parameterizations that might be equally
adept at modeling the data. For example, it may be possible
to capture the patterns with a model in which consonantal
and vocalic ensembles have equivalent sizes and susceptibil-
ities but different ground-state frequencies (x0, see Appendix
A.3). There are also alternative mechanisms that could be
used to account for the patterns, such as exertion-dependent
noise in ensemble sizes. The space of possible models is
indeed very large, and restricting that space will require careful
experimental and analytical methods.
4.2. Exertive fluctuations and assessment of the equilibration
hypothesis

The results were somewhat ambiguous with regard to the
equilibration hypothesis. While three of the six sessions exhib-
Please cite this article in press as: Tilsen, S. Exertive modulation of speech and

wocn.2017.03.001
ited a decrease toward zero lag-1 autocorrelation on long time-
scales, the other three did not. One reason why evidence for
equilibration may be partly lacking is that, in those three ses-
sions, the effects of an equilibration process were obscured
by relatively large or more frequent exertive fluctuations. It
should not be assumed that there is only one timescale on
which exertive variation occurs: some fluctuations may occur
rapidly while others occur more gradually, the latter being likely
to obscure the effects of equilibration. Moreover, although vari-
ation in exertive force creates random walk-like autocorrelation
on short analysis scales, it is important not to view exertion as
a random walk process: exertive force is a conceptual integra-
tion of the effects of many complex metabolic and cognitive
mechanisms. While exertive variation induces non-
stationarity in behavior that is random-walk like to a first
approximation, a more detailed model of exertive mechanisms
could presumably generate non-stationarity through a collec-
tion of nonlinear interactions on multiple timescales.

Given the above considerations, the source of the ambiguity
in assessing the equilibration hypothesis could simply be a
methodological limitation: longer observation sequences may
be necessary. Ideally, in order to conclusively detect equilibra-
tion using autocorrelation scaling analysis, the observation
sequences should be substantially longer than the longest
timescale on which exertive fluctuations occur. Obtaining suffi-
ciently long, uninterrupted sequences may not be very
practical.

An alternative strategy that could be pursued is to test equi-
libration by controlled perturbations of exertion. Imagine an
experimental manipulation that transiently augmented exer-
tion, perhaps the instruction: “You will receive an additional
$10 in compensation if your response consistency score over
the next 10 trials is above 50”. What would the equilibration
dynamics look like subsequent to this perturbation? The
response of articulatory control systems to such a perturbation
should be phase-locked to the onset and offset of the aug-
mented exertion epoch. Manipulations of this sort may shed
light on the nature of interactions between exertion and articu-
latory control mechanisms.

Relatedly, an important question to consider regards how
response consistency feedback in the experiment influences
exertion. Although the feedback was designed not to induce
dramatic changes in response behavior (cf. Section 2.3), exer-
tive systems are presumably influenced by it to some extent.
The nature of the feedback-exertion interaction may be quite
complicated, since both negative and positive feedback might
influence attention and effort. Post-hoc analyses of the relation
between consistency scores and changes in dclo and drel on
post-feedback trials showed no clear pattern of correlation;
indeed, the magnitudes of changes from pre-to-post-
feedback trials were typically within the range of variation in
trial-to-trial differences in the absence of feedback. These
analyses suggest that the feedback scores did not strongly
influence response behavior.
4.3. Further considerations

The theoretical perspective developed here can be consid-
ered in relation to the hyper- and hypo-articulation (H&H) the-
ory (Lindblom, 1990). To some extent, the sort of variation
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associated with low- and high-exertion might be mapped to a
hypo-to-hyper-articulation continuum. However, the basis for
variation between hypo- and hyper-articulation in the H&H
framework is the involvement of social and communicative
constraints, mostly related to listener perception of speech.
The variation in the current context is not socially driven and
therefore shows that other, system-internal factors can also
induce variation. In addition, articulatory predictions discussed
in the context of the H&H theory tend to focus on relations
between segment duration and target undershoot, rather than
timing of movement initiation as in the current study.

While there is undoubtedly some overlap between the hypo-
to-hyper-speech continuum and the variation in exertion mod-
eled here, the exertion model makes some specific predictions
that the H&H framework does not. For example, the hypothe-
sized relation between exertion and the oscillator frequency
parameter x was employed to predict patterns of variance
and covariance in timing intervals. The exertive model also
predicts that non-speech outputs of exertive systems such as
pulse rate, respiration rate, eye movement, pupil dilation, skin
conductivity, body posture and sub-cranial movement, etc. will
correlate with variation in x and accordingly with variation in
speech motor system outputs.

One of the deeper implications of the analysis and interpre-
tation of the experimental results here relates to linear vs. cyc-
lic models of time. The order parameter used in the
autocorrelation scaling analysis requires a concept of phase
(i.e. phase angle), which derives from a cyclic metaphor for
time. In contrast, the time periods we measure in experiments
are derived from a linear metaphor. In the cyclic conception
phases which differ by 2p radians (360�) are equivalent, and
there is a maximal phase distance p. This maximal phase dis-
tance provides the basis for constraints that map from linear to
cyclic time. Here the mapping was accomplished by adopting a
uniform coupling constraint as a first approximation (see
Appendix A.2), although other constraints might be
considered.

A key question is why conduct analyses with phase, why
use a cyclic metaphor for time in the first place? This question
has been addressed in detail in work by Fowler (1980) and by
Kelso and Tuller (1987), which laid out the foundations for the
coupled oscillators approach. The most compelling argument
in my view is that cyclic time is the conceptualization which
most directly corresponds to cognitive representations of tim-
ing between coordinated movements—coordinative timing is
the output of interacting collective oscillations. The concept
of phase thus not only provides a deeper understanding of
the motivation for symmetric displacement phenomena, but it
is more consistent with the microscopic model in which gestu-
ral planning oscillators are instantiated as task-associated
neural ensembles that collectively oscillate.

The implications of this conclusion are far reaching: in ana-
lyzing temporal phenomena, we must carefully consider which
conception of time provides a more appropriate basis for the
analysis. Only some temporal observations should be ana-
lyzed in a cyclic domain. Longer intervals of time associated
with competitively selected movements are better analyzed
in linear time, since these intervals derive from processes
which are not fundamentally oscillatory (Tilsen, 2013, 2016).
Shorter temporal intervals that are associated with coordinated
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movements (e.g. voice onset time, closure-release timing, con-
sonantal constrictions in complex onsets, etc.) should be con-
ducted in a cyclic time domain.
5. Conclusions

This study hypothesized that exertive mechanisms (atten-
tion, effort, focus, arousal, motivation, etc.) have a global mod-
ulatory effect on independent speech systems. Support for this
hypothesis was obtained in the form of positive lag-1 autocor-
relations in response variables and pervasive correlations
between outputs of independent systems. The study also
hypothesized that an equilibration process should promote
symmetric displacement on long timescales. Partial support
for this hypothesis was obtained, and evidence was found for
high- and low-exertion states of production.

The results of this study show that a promising route to
advancing our understanding of the organization and regula-
tion of speech movements is to conduct large-scale investiga-
tions of spontaneous variation in speech behavior. The
patterns identified in this study are unlikely to be detected in
conventional paradigms where there are multiple response
conditions. Each condition that an experimenter adds to a
study not only reduces statistical power but introduces
unavoidable context- and response-ordering confounds which
can scramble important temporal dynamics in behavior. The
unconditioned variation paradigm is inspired by experimental
and theoretical approaches in statistical physics, where macro-
scopic dynamics of complex systems are measured repeatedly
in carefully controlled conditions and models are studied using
Monte Carlo methods. Although the dynamics of human
behavior are far more chaotic than those occurring in most
physical systems, we may gain new insights into speech
behaviors by drastically reducing the complexity of both the
behaviors we elicit experimentally and the contexts in which
those behaviors are observed.
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Appendix A.

A.1. Simulations of random processes

Means and standard deviations of lag-1 autocorrelation
scaling functions for the random processes in Figs. 1 and 10
were calculated from 1000 simulations of each process. Time
series in Fig. 1 had a length of 5000 samples; time series in
Fig. 10 had a length of 400 samples, matching the empirical
data. Random walks were simulated with the rule xi+1 = xi + e,
where e was a Gaussian-distributed step with standard devia-
tion of 0.1. Gaussian noise components had a mean of 0 and
standard deviation of 0.5. Potential functions were of the form
V(x) = 0.5ax2, and were incorporated in simulations by adding
the opposite of their first derivative, �dV(x)/dx = �ax at each
time step. The scaling parameter a, which changes the width
of the potential, was set to 0.02 for all simulations.
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The reader should note that the simulated processes pro-
vide conceptual reference points but are not intended to model
the data directly. The shapes of autocorrelation scaling func-
tions for processes with Gaussian noise and a random walk
component change substantially with changes in the relative
amplitudes of these random noise components, and the poten-
tial scaling parameter a can have a substantial effect as well.
The simulation lengths can also strongly influence the shapes
of the autocorrelation scaling functions: comparison of scaling
functions from the 5000-sample (Fig. 1) and 400-sample
(Fig. 10) simulations illustrates how finite sample sizes induce
a negative bias as the analysis scale increases.
A.2. Coupled oscillators model

Each articulatory gesture (indexed by i) is associated with a
planning oscillator, which can be modeled in polar coordinates
as a point with phase hi and amplitude ri moving counterclock-
wise with phase velocity x (Eq. (2)). Relative phases of plan-
ning oscillators are defined as in (Eq. (3)).

_hi ¼ 2px; _r i ¼ 0 ð2Þ
/ij ¼ hi � hj ð3Þ
dij ¼ 1
2px

� �
/ij ð4Þ

Prior to utterance initiation, relative phase coupling forces
drive the system of planning oscillators toward a stable equilib-
rium relative phase configuration. After stabilization each ges-
ture is initiated when its corresponding oscillator reaches an
arbitrary initiation phase. The time period between the initiation
of movements, d, is determined by the relative phase and fre-
quency of the planning oscillators associated with the equilib-
rium configuration (Eq. (4)). (Note that an alternative model
from Tilsen (2013) derives timing of movement initiation from
relative phases when oscillator amplitudes surpass a
threshold).

By analogy to gravitational or electrostatic forces, in-phase
and anti-phase potential energy functions V+ and V� are
associated with /-coupling forces (Eq. (5)), where force is
proportional to �dV/d/ (Eq. (6)). The oscillator equations
(Eq. (7)) thus include a term which incorporates the phase
coupling, with coupling strengths cij.

Vþð/Þ ¼ � cos/; V�ð/Þ ¼ cosu ð5Þ
Fð/Þ ¼ �c
dVð/Þ
d/

ð6Þ
_hi ¼ 2pxþ
X
j

cij
�dVð/ijÞ

d/ij

; C ¼
0 c12 c13
c21 0 c23
c31 c32 0

2
64

3
75 ð7Þ

The steady state /-configuration for a system of three oscil-
lators is achieved when all coupling forces are balanced (Eq.
(8)). The steady state equation has an analytic solution (Eq.
(9)) when bidirectional coupling strength symmetry (cij = cji) is
imposed on the coupling strength matrix C. Imposing the sym-
metric displacement constraint (c12 = c23) entails that oscilla-
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tors 1 and 3 are equally displaced from 2, i.e. /12 = /23.
Imposing the uniform coupling (i.e. c12 = c23 = c13) entails a
steady-state /-configuration in which /12 = /23 = p/3.

X
ij

cij
�dVðuijÞ

duij

¼ 0 ð8Þ

u�
12 ¼ u�

23 ¼ 2 tan�1 2a� b
2aþ b

� �1
2

ð9Þ

The uniform coupling constraint minimizes the potential
energy cost of deviation in / from the uniform coupling theoret-
ical value of p/3. This occurs when the average in-phase cou-
pling strength equals the magnitude of the anti-phase coupling
strength, i.e. (c12 + c23)/2 = |c13|. It follows that estimated rela-
tive phases (/-hat) deviate equally from the uniform coupling
equilibrium, p/3 (Eq. (10)), and leads to the expression for esti-
mated frequency in (Eq. (11)).

U ¼ ð/̂12 � /�
12Þ ¼ �ð/̂23 � /�

23Þ; /̂12 ¼ �/̂23 þ 2p
3

ð10Þ

x̂ ¼ 1
3ðd12 þ d23Þ ð11Þ

Note that the uniform coupling constraint makes the relative
phases /12 and /23 redundant, since each deviates from p/3
the same amount in opposite directions. Hence no additional
information is associated with one / when the other one is
known. This is desirable because we have reduced our
description of the system to just two parameters: U and x.
The variable U is an order parameter of the system and
describes the extent to which the estimated / deviate from
symmetric displacement.
A.3. Exertive force and susceptibility model

In order to test whether the exertive force model can repro-
duce the empirical correlation and variance patterns of dclo and
drel, a stochastic model was optimized to fit three datapoints of
the linear regressions in Fig. 14 (also Fig. 12)—these points
corresponded to the minimum x, maximum x, and the mid-
point between these. A multistart optimization procedure was
used, with the minimized cost being the sum of the normalized
deviations from dclo, drel correlation and variance of dclo.
Because of the stochastic nature of the model, it is important
to obtain multiple estimates of the output correlations and vari-
ances. Hence 50 repetitions of the simulation were produced
for each frequency value, and the outputs were averaged by
frequency value.

To simplify notation below, clo = 1, vow = 2, and rel = 3.
Each simulation produced 40 trials of d12 and d23, in order to
match the window length used for the analysis in Fig. 12.
The d produced in each trial are influenced by random Gaus-
sian noise that is added to each of the coupling strengths.
The relative phases /12 and /23 were calculated using an ana-
lytical solution of the system of equations in (Eq. (12)) where
the constraint h1 > h2 > h3 was imposed.

c12 sin/12 � c13 sin/13 ¼ 0

c23 sin/23 � c13 sin/13 ¼ 0

c12 sin/12 � c23 sin/12 ¼ 0

ð12Þ
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Table A1
Exertive force model parameters.

Parameter Value Description

N0
C 0.67 Consonantal ground-state ensemble size (vowel N0 = 1)

vC 1.51 Consonantal susceptibility (vowel v = 1)
b 2.69 Exponent of exertive force effect in Eq. (13)
r 0.072 Standard deviation of Gaussian noise in Eq. (14)
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The parameter x, in combination with susceptibilities vi was
used to calculate the ensemble sizes Ni, as in (Eq. (13)), where
N0

i and x0 are the ground state ensemble size and frequency.
The ground-state frequency x0 was set at 1.42 Hz, the lowest
x observed in the empirical data. Coupling strengths were
determined in each trial from (Eq. (14)), where the first term
is the geometric mean of the ensemble sizes and the second
includes Gaussian noise with zero mean and standard devia-
tion r. Modulating this noise with the factor [1 + (x � x0)]
improves the quantitative fit by making the coupling strength
noise depend on x, the proxy for exertion.

Ni ¼ N0
i þ viðx�x0Þb ð13Þ
cij ¼ ðNiNjÞ
1
2 þ ½1þ ðx�x0Þ�eð0;rÞ ð14Þ

Equality of consonantal gesture ensemble size was
enforced by imposing the constraint: N0

1 = N0
3 = N0C and

v1 = v3 = vC, i.e. the ground-state ensemble sizes and suscepti-
bilities are the same for both consonantal gestures. The ground
state N0 for the vowel was fixed at 1, and the vowel v was fixed
at 1. The optimized parameter values are given in Table A1.
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